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Abstract. We show that if the unit square is covered by n rectangles, then at 
least one must have perimeter at least 4(2m + 1) / (n  + m(m + 1)), where m is 
the largest integer whose square is at most n. This result is exact for n of the 
form m(m + 1) (or m2). 

I. Introduction 

In this note, we address the following problem, suggested by L. Hurwicz [1]. How 
can we partition the unit square, U, into a given number, n, of rectangles (all 
having edges parallel to those of the square), so as to minimize the largest of their 
perimeters? The same question has been raised when the rectangles are only 
required to cover the square, with overlap allowed. 

These problems arose from a model of a communication problem, in which n 
is the number  of potential messages, and the perimeter of the associated rectangle 
is a measure of the uncertainty of successful communication of that message. 

We will obtain the same lower bounds for the partition and covering 
problems for the largest perimeter. In the following discussion we will denote the 
smallest largest perimeter for given n for the partition problem as p(n). 

It is easy to see that p(n) obeys 

p(n) > 4/~/-n-, (1.1) 
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with equality if and only if n is a perfect square, say m 2. For, the largest rectangle 
must have area at least 1 / n  and hence perimeter at least as given; and equality 
can only hold if all rectangles have area exactly 1 / n  and are squares, which is 
only feasible if n is a perfect square. 

Here we will improve this trivial lower bound for all non-square n. In 
particular we obtain an exact expression for n of the form m(m + 1) with integer 
m, namely, 

p ( m ( m + l ) )  = 2 / m  + 2 / ( r e + l ) .  (1.2) 

We also establish an upper bound for p (n )  which exceeds our lower bound 
by at most (¼ + o(1))n -3/2. 

In the next section we obtain a linear programming problem whose solution 
provides a lower bound for p(n).  We show this by integrating certain functions 
over the boundary of the square. In Section 3 we solve the linear program to 
obtain our lower bound for p(n) .  In Section 4 we apply these results to the 
covering problem. We then describe the construction, which has been conjectured 
to be optimal (by Hurwicz). We conclude with some additional remarks. 

2. The Linear Inequalities 

Let U be the unit square, U = ((x, y): 0 < x, y < 1), and let P be a partition of U 
into (or covering of U by) rectangles R 1 . . . . .  R, ,  each having edges parallel to the 
axes. For  each i here let A i denote the area of the rectangle Ri and let p, denote 
its perimeter, with p the largest value of the p,s. 

For  0 < z <1,  we say that z sees R i if the line x = z intersects R~, while for 
1 <_ z < 2, z sees R 1 when the line y = z - 1 intersects Rj. 

We define/~k, for integral k, to be the (one-dimensional Lebesgue) measure 
of  the set of values of z for which z sees exactly k rectangles. Clearly the function 
~t k obeys the conditions,/~k > 0, and also 

/t k = 2. (2.1) 
k = l  

We will now prove the following two statements: 

Proposition 2.1. With the given definitions we have, both for partitioning and 
covering, 

1 ~ p i < n P  
~ k~k = -2 -U" 

k = i  i ~ l  

Proposition 2.2. With these same definitions we have, again for both problems, 

l~k " ~ p 

T <-E <-T' k =1 i=l 

where ~ is the sum of the areas of all the rectangles. 
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It immediately follows from Eq. (2.1) and these two statements that the 
smallest value of the parameter p that, with any set of ~k, obeys 

/~k > 0 for a l lk ,  

~ t~, = 2, 

P -> n k~tk' 

p > 2  --~ 
k = l  

must provide a lower bound for p = p(n)  here, since p must in fact obey all 
these. This is then a linear program, and our lower bound will be the minimum p 
solution for it. 

We now prove the two statements here. 

Proof of Proposition 2.1. We define the function f ( z )  to be the number of 
rectangles seen by z, which is the sum over each rectangle of 1 if the rectangle is 
seen by z. The integral of f ( z )  from 0 to 2 will then contain a contribution of 
p , / 2  from the ith rectangle. But it is also the sum of k/~ k, from our definitions. [] 

Proof of Proposition 2.2. We define the function g(z)  for z <1 to be the sum of 
the squares of the lengths of the rectangles seen by z, where by length we mean 
size measured along the line x = z. If we denote these rectangles by Z I . . . . .  Z k, 
and their lengths by a 1 . . . . .  ak, respectively, then we have g(z)  = Ea~. (Note that 
for the partitioning problem these as will sum to one, while in the covering 
problem they will sum to at least one.) 

For  z > 1 we similarly define g(z)  to be the sum of the squares of the widths 
of the rectangles seen by z. 

We obtain our inequality by evaluating the integral, J, of g(z)  from 0 to 2. 
The contribution from the rectangle R~, whose length is I and width is w, will 

be wl 2 + lw z which is lw(l + w) or ½Aip~. We therefore have 

~] p , ~  1 hp  
J = < 2 p E A i  = 2 " 

On the other hand, when z sees k rectangles, then g(z)  >_ 1 / k .  For, by the 
convexity of the square, we have, g(z)  = Ea~ > ('Zai)2/k > 1 / k ,  where the sum 
has k terms. Thus we have J > F p.k/k.  [] 

3. The Lower Bound 

We may extract a lower bound for the partition problem from the linear program 
just described (with h = 1) by producing a feasible point for the dual program. In 
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fact, it is easy to solve the dual problem here, since it involves only three 
variables, two of which are easily eliminated. The resulting solution then gives the 
best possible bound that can be extracted from the inequalities defining the 
program. We now state our results. 

Proposition 3.1. I f  n is of the form m(m + 1) then p ( n )  is 2 / m  + 2 / ( m  + 1). 

Pro0osition 3.2. In general, p (n )  must be at least 4(2m + l ) / ( n  + m (m  +1)), 
where m is the greatest integer whose square is at most n. 

Proposition 3.1 includes the fact that the regular partition of the square into 
m ( m  + 1) congruent rectangles of size 1 / m  by 1 / ( m  + 1) realizes the lower bound 
that we derive. 

Proofs. If we let r, s, and t be the dual variables associated, respectively, with 
the constraints of Eq. (2.1), Proposition 2.1, and Proposition 2.2, we obtain as 
dual program: 

Maximize 2r, subject to 

s > 0 ,  t > 0 ,  
s + t  < l ,  
and for all integer k with k < n, 

2t 2ks 
r<- - - k -+  n (3.1) 

It is obvious that the maximum here will occur when s + t = 1, and will occur 
at the intersection of some of the constraints (3.1). If we set s = 1 -  t, and 
examine the values of t for which the k constraint intersects the k + 1 constraint, 
we find that these increase with k, while the slopes of these constraints as a 
function of t decrease with k. It then follows that these consecutive intersection 
points obey all the constraints, so that the value of 2r according to inequalities 
(3.1) that has the largest r value among them will provide a lower bound to any 
primal solution, and that will be the best bound that can be obtained from these 
inequalities. 

The k, k + 1 intersection referred to here occurs when we have 

k t ( 1 -  t ) (k  +1)  + t 
( 1 -  t )~-  + ~ = n ( k + l ) '  

or for t and 2r  given by 

k ( k  + 1 ) ( 1 -  t) = tn, 
n 

t = 1 - (n + ~ ( k  + 1) ) '  

4(2k + 1) 
2r = ( n + k ( k + l ) ) "  
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It is obvious geometrically that the bound is maximized when k 2 <  n and 
(k + 1) 2 > n, since that is the place at which the slope of the lower envelope of 
these constraints changes sign. [] 

We note that, as n varies from rn 2 to rn(rn + 1) and to (m +1)  2, the bound 
given by Proposition 3.2 interpolates between what are exact bounds at these 
three points, according to a formula that can be written as a/ (n  + b). 

4. Lower Bounds for the Covering Problem 

We will now show that the lower bounds given in Propositions 3.1 and 3.2 for the 
partition problem apply as well to the more general covering problem. We do this 
by replacing the covering by rectangles problem by a partition-into-polyominoes 
problem, and showing that the results of the last two sections apply as well when 
the rectangles are replaced by such polyominoes. 

A potyomino L is a disjoint union of one or more planar regions with 
rectilinear axis-parallel sides that lies inside the unit square U. Note that L is not 
necessarily connected. For 0 < z < 1, we say that z sees L if the line x = z 
intersects L, and we let a(L, z) denote the total length of this intersection (i.e., 
the sum of lengths of the intervals in L n {(x, y): x = z, 0 < y < 1}. Similarly, for 
1 < z < 2, we say that z sees L if the line y = z - 1  intersects L, and we let 
a(L, z) denote the total length of this intersection. The width of L, w(L) is the 
(one-dimensional Lebesgue) measure of the set of values z, 0 < z < 1, that sees L. 
The length of L, I(L) is the measure of the set of values z, 1 < z < 2, that sees L. 

Notice that 

a ( L , z )  <_ I (L)  fo ra l l0  < z < 1 (4.1) 

and 

a ( L , z )  < w(L)  f o r a l l l  < z < 2. (4.2) 

Notice also that if p(L)  is the perimeter of L and q(L)= 2I(L)+2w(L) 
then 

q(L)  <_ p ( L ) ,  (4.3) 

and equality holds iff the intersection of L with every vertical or horizontal line is 
connected (or empty). 

Suppose, now, that the unit square U is partitioned into polyominoes 
L1 . . . . .  L,,. For  each i, let A i denote the area of the polyomino L~, and put 
q, = q(L~). Define/~k, for integral k, as in Section 2. Clearly (2.1) holds. Let 
q --- max(q,: 1 _< i _< n). Imitating the proof of Proposition 2.1 we conclude that 

1 ~ nq 
ktt k = -~ q~ < -~ .  

k =1 i=1  

The next proposition is the analogue of Proposition 2.2 for polyominoes. 
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Proposition 4.1. 

k = l  

N, Alon and D. J. Ktei tman 

For the partitioning to polyominoes problem 

i~I 

Proof. Define, for 0 < z _< 2. 

g(z)  = E ( a 2 ( L , , z ) :  Li isseen from z}. 

Let J be the integral of g from 0 to 2. By the convexity of the square we obtain, 
as in the proof of Proposition 2.2, that 

k = l  

On the other hand, we claim that the contribution of L i to J is at most ½qiAr 
Indeed, by inequalities (4.1) and (4.2) 

1 2 2 2 2 
f = o  ( L , , z ) +  f a (Li ,  z ) <_ fa=ol (L , )a (L i ,  z ) + f = l w ( L , ) a ( L i ,  z)  

= (l(Li)+ w(Li))A i = ½qiA,. 

Hence J < F~"= lqiA J 2  <_ q/2,  and Proposition 4.1 follows. [] 
We thus conclude that the lower bound for p ( n )  given by Proposition 3.2 

holds also for q, and, in view of inequality (4.3), we obtain, 

Theorem 4.2, In any partitioning of the unit square into n polyominoes L 1 . . . .  , L n, 
if q = max q( L,)  and p is the maximal perimeter of the Lis then 

4(2m +1) 
P >- q > ( n + m ( m + l ) ) '  

where m is the greatest integer with m 2 < n. This is exact for n = m 2 or n = m ( m  + 1). 

Corollary 4.3. The lower bound given by p ( n )  >_ 4(2m + 1)/(n + m ( m  + 1)), with 
m the greatest integer with m 2 < n; which is exact for n = m z or n = m(m + 1); 
holds for any covering of the unit square by axis parallel rectangles. 

Proof Given a covering of U by n rectangles Rx, R 2 . . . . .  R, ,  let L~ be the 
polyomino R i - ( R i + l U  . . .  U R,) .  Since L~ is a subset of R~, q(L~) is at most 
the perimeter of R e Since L~ . . . . .  L,  form a partition of U into polyominoes the 
result follows from Theorem 4.2. [] 
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5. Upper Bound Constructions and Remarks 

When n = m  2 or n = m ( m  +1), partitions of the unit square into n rectangles 
immediately suggest themselves. For other values of m, there is no regular 
partition, and the closest we can come to one is to have two kinds of rectangles, 
with, for example, some values of z, with z < 1, seeing m rectangles of one kind, 
and others seeing m + 1 rectangles of the other kind. 

Specifically, when n = m(m + 1) we can have m rows with m + 1 congruent 
rectangles in each; when n = m(m + 1 ) -  j ,  for j < m, we instead have only m 
rectangles in j of the rows, and make all rectangles in the same kind of row 
identical. The dimensions of the two kinds of rectangles can then be adjusted so 
that all perimeters are the same. Similarly, when n = m ( m  + 1 ) +  j ,  for j _< m we 
may have m + 1 rectangles in each of j columns and m rectangles in the 
m + 1 - j other columns. 

These constructions seem to be best possible, and have been conjectured to 
be so by Hurwicz, for covering as well as partitioning. That they are so has been 
proven for small values of n. 

The upper  bound on minimum maximum perimeter that follows from these 
constructions agrees with the lower bounds for n = m 2, m(m + 1), and (m + 1) 2, 
and curiously, provides a linear interpolation between these values for other n. 

Thus for n between m 2 and m(m + 1), the upper bound we get here is 
4(3m 2 + 2m - n ) / (2m2(m  + 1)); while for n between m (m  + 1) and (m + 1) 2 we 
get an upper  bound of 4((3m + 1)(m + 1 ) -  n) / (2 (m  + 1)2m). 

We conclude with the following remarks: 
1. Hurwicz conjectured that the upper bound given is actually best even if 

one is allowed to tilt the rectangles. It is dubious that tilting does any good 
here, and it would be nice to be able to prove so. 

2. The difference between upper and lower bounds here fluctuates between 
zero and an upper bound that behaves as n-3/2/4(1 + o(1)). 

3. It would be nice to be able to handle values of n that are not squares or of 
the form rn(m + 1), as welt as similar problems in higher dimensions. 
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